Dr. Sarah Depaoli is Professor of Quantitative Methods, Measurement & Statistics at the University of California, Merced. Her research interests include examining different facets of Bayesian estimation for latent variable, growth, and finite mixture models. She has a continued interest in the influence of prior distributions and robustness of results under different prior specifications, as well as issues tied to latent class separation. Her recent research has focused on using Bayesian semi- and non-parametric methods for obtaining proper class enumeration and assignment, examining parameterization issues within Bayesian SEM, and studying the impact of priors on longitudinal models.
Website: www.sarahdepaoli.com