Tanaka Award for Best Article in Multivariate Behavioral Research

The Tanaka Award for Annual Best Article in MBR is named for Jeffrey Tanaka, an outstanding and well-liked member of SMEP who died in 1992. This award is given annually to the authors of the most outstanding paper published in Multivariate Behavioral Research. Each year SMEP members vote among all papers published in the journal. The awardees receive a $1,000 honorarium.
Past recipients of the Tanaka Award for Annual Best Article in MBR:

2024: Brenna Gomer (Utah State University) and Ke-Hai Yuan (University of Notre Dame) for their paper:
Gomer, B. & Yuan, K-H. (2023). A realistic evaluation of methods for handling missing data when there is a mixture of MCAR, MAR, and MNAR mechanisms in the same dataset. Multivariate Behavioral Research58, 988-1013.

2023: Lourens Waldorp and Maarten Marsman (University of Amsterdam) for their paper:
Waldorp, L. & Marsman, M. (2022). Relations between networks, regression, partial correlation, and the latent variable model. Multivariate Behavioral Research57, 994-1006.

2022: Oscar Gonzalez (University of North Carolina-Chapel Hill), David MacKinnon (Arizona State University), and Felix Muniz (Arizona State University) for their paper:
Gonzalez, O., MacKinnon, D. P., & Muniz, F. B. (2021). Extrinsic convergent validity evidence to prevent jingle and jangle fallacies. Multivariate Behavioral Research56, 3-19.

2021: Jason Rights (University of British Columbia) & Sonya Sterba (Vanderbilt University) for their paper:
Rights, J. D., & Sterba, S. K. (2020). New recommendations on the use of R-Squared Differences in Multilevel Model Comparisons. Multivariate Behavioral Research55, 568-599.
— and —
2021: Daniel McNeish (Arizona State University), Denis Dumas (University of Denver), & Kevin Grimm (Arizona State University) for their paper:
McNeish, D., Dumas, D. G., & Grimm, K. J. (2020) Estimating New Quantities from Longitudinal Test Scores to Improve Forecasts of Future Performance. Multivariate Behavioral Research55, 894-909.

2020: Yi Feng, Greg Hancock, & Jeffrey Harring (University of Maryland) for their paper:
Feng, Y., Hancock, G. R., & Harring, J. R. (2019). Latent Growth Models with Floors, Ceilings, and Random Knots. Multivariate Behavioral Research, 54, 751-770.

2019: Haiyan Liu (University of California, Merced), Ick Hoon Jin (University of Notre Dame), & Zhiyong Zhang (University of Notre Dame) for their paper:
Liu, H., Jin, I. H., & Zhang, Z. (2018). Structural Equation Modeling of Social Networks: Specification, Estimation, and Application. Multivariate Behavioral Research53, 714-730.

2018: Samantha Anderson (Arizona State University) & Scott Maxwell (University of Notre Dame) for their paper:
Anderson, S. F., & Maxwell, S. E. (2017). Addressing the “replication crisis”: Using original studies to design replication studies with appropriate statistical power. Multivariate Behavioral Research52, 305-324.

2017: John Nesselroade (University of Virginia) & Peter Molenaar (Pennsylvania State University) for their paper:
Nesselroade, J. R., & Molenaar, P. C. M. (2016). Some behavioral science measurement concerns and proposals. Multivariate Behavioral Research51, 396-412.

2016: Scott Monroe and Li Cai (University of California at Los Angeles) for their paper:
Monroe, S., & Cai, L. (2015). Evaluating structural equation models for categorical outcomes: A new test statistic and a practical challenge of interpretation. Multivariate Behavioral Research50, 569-583.

2015: John J. McArdle (University of Southern California) & Scott M. Hofer (University of Victoria) for their paper:
McArdle, J. J., & Hofer, S. M. (2014). Fighting for intelligence: A brief overview of the academic work of John L. Horn. Multivariate Behavioral Research49, 1-16.

2014: Kristopher J. Preacher (Vanderbilt University) for his paper:
Preacher, K.J., Zhang, G., Kim, C., & Mels, G. (2013). Choosing the optimal number of factors in exploratory factor analysis: A model selection perspective. Multivariate Behavioral Research48, 28-56.

2013: Steven P. Reise (University of California, Los Angeles) for his paper:
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research47, 667-696.

2012: Scott E. Maxwell (University of Notre Dame), David A. Cole (Vanderbilt University), & Melissa A. Mitchell (University of Notre Dame) for their paper:
Maxwell, S. E., Cole, D. A., Mitchell, M. A. (2010). Bias in cross-sectional analyses of longitudinal mediation: Partial and complete mediation under an autoregressive model. Multivariate Behavioral Research46, 816-841.

2011: Sonya K. Sterba (Vanderbilt University) & Robert C. MacCallum (University of North Carolina, Chapel Hill) for their paper:
Sterba, S. K., & MacCallum, R. C. (2010). Variability in parameter estimates and model fit across repeated allocations of items to parcels. Multivariate Behavioral Research45, 322-358.

2010: Nisha C. Gottfredson, Abigail T. Panter, Charles E. Daye, Walter F. Allen, & Linda F. Wightman (University of North Carolina, Chapel Hill) for their paper:
Gottfredson, N. D., Panter, A. T., Daye, C. E., Allen, W. F., & Wightman, L. F. (2009). The effects of educational diversity in a national sample of law students: Fitting multilevel latent variable models in data With categorical indicators. Multivariate Behavioral Research44, 305-331.

2009: Gitta Lubke (University of Notre Dame) & Michael Neale (Virginia Commonwealth University) for their paper:
Lubke, G., & Neale, M. C. (2008). Distinguishing between latent classes and continuous factors with categorical outcomes: Class invariance of parameters of factor mixture models. Multivariate Behavioral Research43, 592-620.

2008: Stephen H. C. du Toit (Scientific Software International) & Michael W. Browne (Ohio State University) for their paper:
du Toit, S. H. C., & Browne, M. W. (2007). Structural equation modeling of multivariate time series. Multivariate Behavioral Research42, 67-101.
— and —
2008: Lesa Hoffman (University of Nebraska – Lincoln) for her paper:
Hoffman, L. (2007). Multilevel models for examining individual differences in within-person variation and covariation over time. Multivariate Behavioral Research42, 609-629.

2007: Kristopher J. Preacher (University of Kansas) for his paper:
Preacher, K. J. (2006). Quantifying parsimony in structural equation modeling. Multivariate Behavioral Research41, 227-259.

2006: Daniel J. Bauer & Patrick J. Curran (University of North Carolina, Chapel Hill) for their paper:
Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research40, 373-400.

2005: Roger E. Millsap & Jenn-Yun Tein (Arizona State University) for their paper:
Millsap, R. E., & Tein, J.-Y. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research39, 479-515.

2004: Nancy Briggs (Ohio State University) & Robert MacCallum (University of North Carolina, Chapel Hill) for their paper:
Briggs, N. E., & MacCallum, R. C. (2003). Recovery of weak common factors by maximum likelihood and ordinary least squares estimation. Multivariate Behavioral Research38, 25-56.

2003: Steve Boker (University of Notre Dame) & John Nesselroade (University of Virginia) for their paper:
Boker, S. M., & Nesselroade, J. R. (2002). A method for modeling the intrinsic dynamics of intraindividual variability: Recovering the parameters of simulated oscillators in multi-wave panel data. Multivariate Behavioral Research37, 127-160.

2002: Robert MacCallum (Ohio State University), Keith Widaman (University of California, Davis), Kristopher Preacher (Ohio State University), & Sehee Hong (University of California, Santa Barbara) for their paper:
MacCallum, R. C., Widaman, K. F., Preacher, K. J., & Hong, S. (2001). Sample size in factor analysis: The role of model error. Multivariate Behavioral Research36, 611-637.

2001: Conor Dolan (University of Amsterdam) for his paper:
Dolan, C. V. (2000). Investigating Spearman’s hypothesis by means of multi-group confirmatory factor analysis. Multivariate Behavioral Research35, 21-50.

2000: Joseph Rodgers (University of Oklahoma) for his paper:
Rodgers, J. L. (1999). The bootstrap, the jackknife, and the randomizatioin test: A sampling taxonomy. Multivariate Behavioral Research34, 441-456.

1999: Roger Millsap (Arizona State University) for his paper:
Millsap, R. E. (1998). Group differences in regression intercepts: Implications for factorial invariance. Multivariate Behavioral Research33, 403-424.

1998: Robert MacCallum, Cheongtag Kim, William Malarkey, & Janice Kiecolt-Glaser (Ohio State University) for their paper:
MacCallum, R. C., Kim, C., Malarkey, W. B., & Kiecolt-Glaser, J. K. (1997). Studying multivariate change using multilevel models and latent curve models. Multivariate Behavioral Research32, 215-253.

1997: Norman Cliff (University of Southern California) for his paper:
Cliff, N. (1996). Answering ordinal questions with ordinal data using ordinal statistics. Multivariate Behavioral Research31, 331-350.

1996: Charles (Chip) Reichardt (University of Denver) & S. C. Coleman (Citicorp Diners Club) for their paper:
Reichardt, C. S., & Coleman, S. C. (1995). The criteria for convergent and discriminant validity in a multitrait-multimethod matrix. Multivariate Behavioral Research30, 513-538.

1995: Roger Millsap (Baruch College, CUNY) & William Meredith (University of California, Berkeley) for their paper:
Millsap, R. E., & Meredith, W. (1994). Statistical evidence in salary discrimination studies. Multivariate Behavioral Research29, 339-364.

1994: Keith Widaman (University of California, Riverside) for his paper:
Widaman, K. F. (1993). Common factor analysis versus principal component analysis: Differential bias in representing model parameters? Multivariate Behavioral Research28, 263-311.

Scroll to Top